- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Edalati, Kaveh (1)
-
Enikeev, Nariman (1)
-
Hidalgo, Jimenez J (1)
-
Horita, Zenji (1)
-
Langdon, Terence G (1)
-
Levitas, Valery I (1)
-
Nguyen, Thanh T (1)
-
Rogl, Gerda (1)
-
Sena, Hadi (1)
-
Valiev, Ruslan Z (1)
-
Zehetbauer, Michael J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ceramics are typically brittle at ambient conditions due to their covalent or ionic bonding and limited dislocation activities. While plasticity, and occasionally superplasticity, can be achieved in ceramics at high temperatures through thermally activated phenomena, creep, and grain boundary sliding, their deformation at ambient temperature and pressure remains challenging. Processing under high pressure via the high-pressure torsion (HPT) method offers new pathways for severe plastic deformation (SPD) of ceramics. This article reviews recent advances in HPT processing of ceramics, focusing primarily on traditional ceramics (e.g., oxides, carbides, nitrides, oxynitrides) and to a lesser extent advanced ceramics (e.g., silicon, carbon, perovskites, clathrates). Key structural and microstructural features of SPD-processed ceramics are discussed, including phase transformations and the generation of nanograins and defects such as vacancies and dislocations. The properties and applications of these deformed ceramics are summarized, including powder consolidation, photoluminescence, bandgap narrowing, photovoltaics, photocatalysis (dye degradation, plastic waste degradation, antibiotic degradation, hydrogen production, CO2 conversion), electrocatalysis, thermoelectric performance, dielectric performance, and ion conductivity for Li ion batteries. Additionally, the article highlights the role of HPT in synthesizing novel materials, such as high-entropy ceramics (particularly high-entropy oxides), black oxides, and high-pressure polymorphs, which hold promise for energy and environmental applications.more » « lessFree, publicly-accessible full text available July 1, 2026
An official website of the United States government
